

- Ideal for LO in 303.825 MHz Superhet Receivers with 500 kHz IF
- Very Low Series Resistance
- **Quartz Stability**
- Rugged, Hermetic, Low-Profile TO39 Case

The RO2116 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at approximately 303.325 MHz. The RO2116 is designed for IC-based 303.825 MHz superhet receivers with 500 kHz IF (Philips UAA3201T). Applications include wireless remote-control and security receivers operating in the USA under FCC Part 15, in Japan, in Australia, and in Korea.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

RO2116

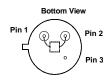
303.325 MHz SAW Resonator

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25 °C)	Absolute Frequency	f _C	2, 3, 4, 5	303.250		303.400	MHz
	Tolerance from 303.325 MHz	Δf_{C}	2, 3, 4, 5			±75	kHz
Insertion Loss	Insertion Loss		2, 5, 6		1.0	1.5	dB
Quality Factor	Unloaded Q	Q _U	5, 6, 7		14,700		
	50 Ω Loaded Q	Q_L	5, 6, 7		1,600		
Temperature Stability	Turnover Temperature	T _O		10	25	40	°C
	Turnover Frequency	f _O	6, 7, 8		f _c		
	Frequency Temperature Coefficient	FTC	1		0.037		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1		≤10		ppm/yr
DC Insulation Resistance bet	DC Insulation Resistance between Any Two Pins		5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}			12	19	Ω
	Motional Inductance	L _M	5, 7, 9		93.7991		μH
	Motional Capacitance	C _M			2.93512		fF
	Pin 1 to Pin 2 Static Capacitance	Co	5, 6, 9	3.1	3.4	3.7	pF
	Transducer Static Capacitance	C _P	5, 6, 7, 9		3.1		pF
Test Fixture Shunt Inductance	e	L _{TEST}	L _{TEST} 2, 7 81 nl-		nH		
Lid Symbolization (in Addition	n to Lot and/or Date Codes)	RFM RO2116					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

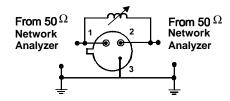
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- The center frequency, f_C, is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, f_{OSCILLA}-TOR or f_{TRANSMITTER} is less than the resonator f_C.
- One or more of the following United States patents apply: 4,454,488 and
- 4,616,197 and others pending.

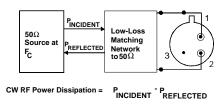

 Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- The design, manufacturing process, and specifications of this device are subject to change without notice.

- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_{O} . The nominal frequency at any case temperature, T_{C} , may be calculated from: f = f_0 [1 - FTC $(T_0 - T_C)^2$]. Typically, oscillator T_0 is 20°C less than the specified resonator To.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to Co.

Electrical Connections

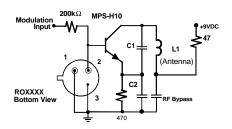
This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.


Pin	Connection
1	Terminal 1
2	Terminal 2
3	Case Ground

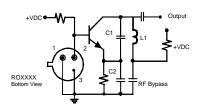

Typical Test Circuit

The test circuit inductor, $L_{\text{TEST}},$ is tuned to resonate with the static capacitance, C_{O} at $F_{\text{C}}.$

Electrical Test:

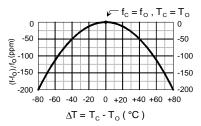


Power Test:

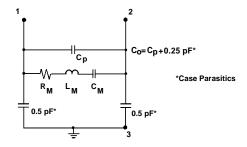


Typical Application Circuits

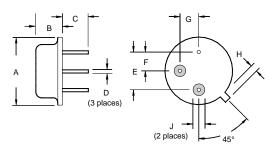
Typical Low-Power Transmitter Application:



Typical Local Oscillator Application:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millimeters		Inches		
	Min	Max	Min	Max	
A		9.30		0.366	
В		3.18		0.125	
С	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 N	5.08 Nominal		0.200 Nominal	
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		